Derivation and Evaluation of LAI from the ICESat-2 Data over the NEON Sites: The Impact of Segment Size and Beam Type

Author:

Wang Yao12ORCID,Fang Hongliang2ORCID

Affiliation:

1. Chongqing Key Laboratory of GIS Application, School of Geography and Tourism, Chongqing Normal University, Chongqing 401331, China

2. LREIS, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Abstract

The leaf area index (LAI) is a critical variable for forest ecosystem processes. Passive optical and active LiDAR remote sensing have been used to retrieve LAI. LiDAR data have good penetration to provide vertical structure distribution and deliver the ability to estimate forest LAI, such as the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). Segment size and beam type are important for ICESat-2 LAI estimation, as they affect the amount of signal photons returned. However, the current ICESat-2 LAI estimation only covered a limited number of sites, and the performance of LAI estimation with different segment sizes has not been clearly compared. Moreover, ICESat-2 LAIs derived from strong and weak beams lack a comparative analysis. This study derived and evaluated LAI from ICESat-2 data over the National Ecological Observatory Network (NEON) sites in North America. The LAI estimated from ICESat-2 for different segment sizes (20, 100, and 200 m) and beam types (strong beam and weak beam) were compared with those from the airborne laser scanning (ALS) and the Copernicus Global Land Service (CGLS). The results show that the LAI derived from strong beams performs better than that of weak beams because more photon signals are received. The LAI estimated from the strong beam at the 200 m segment size shows the highest consistency with those from the ALS data (R = 0.67). Weak beams also present the potential to estimate LAI and have moderate agreement with ALS (R = 0.52). The ICESat-2 LAI shows moderate consistency with ALS for most forest types, except for the evergreen forest. The ICESat-2 LAI shows satisfactory agreement with the CGLS 300 m LAI product (R = 0.67, RMSE = 1.94) and presents a higher upper boundary. Overall, the ICESat-2 can characterize canopy structural parameters and provides the ability to estimate LAI, which may promote the LAI product generated from the photon-counting LiDAR.

Funder

Science and Technology Research Program of Chongqing Municipal Education Commission

Science Foundation of Chongqing Normal University

State Key Laboratory of Resources and Environmental Information System

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3