Forest Canopy Height Retrieval and Analysis Using Random Forest Model with Multi-Source Remote Sensing Integration

Author:

Zhu Weidong123ORCID,Li Yaqin1,Luan Kuifeng12ORCID,Qiu Zhenge12,He Naiying12,Zhu Xiaolong1,Zou Ziya1

Affiliation:

1. College of Marine Science, Shanghai Ocean University, Shanghai 201306, China

2. Shanghai Estuary Marine Surveying and Mapping Engineering Technology Research Center, Shanghai 201306, China

3. Nansha Islands Coral Reef Ecosystem National Observation and Research Station, Guangzhou 510300, China

Abstract

Forest canopy height is an important indicator of the forest ecosystem, and an accurate assessment of forest canopy height on a large scale is of great significance for forest resource quantification and carbon sequestration. The retrieval of canopy height based on remote sensing provides a possibility for studying forest ecosystems. This study proposes a new method for estimating forest canopy height based on remote sensing. In this method, the GEDI satellite and ICESat-2 satellite, which are different types of space-borne lidar products, are used to cooperate with the Landsat 9 image and SRTM terrain data, respectively. Two forest canopy height-retrieval models based on multi-source remote sensing integration are obtained using a random forest regression (RFR) algorithm. The study, conducted at a forest site in the northeastern United States, synthesized various remote sensing data sets to produce a robust canopy height model. First, we extracted relative canopy height products, multispectral features, and topographic data from GEDI, ICESat-2, Landsat 9, and SRTM images, respectively. The importance of each variable was assessed, and the random forest algorithm was used to analyze each variable statistically. Then, the random forest regression algorithm was used to combine these variables and construct the forest canopy height model. Validation with airborne laser scanning (ALS) data shows that the GEDI and ICESat-2 models using a single data source achieve better accuracy than the Landsat 9 model. Notably, the combination of GEDI, Landsat 9, and SRTM data (R = 0.92, MAE = 1.91 m, RMSE = 2.78 m, and rRMSE = 12.64%) and a combination of ICESat-2, Landsat 9, and SRTM data (R = 0.89, MAE = 1.84 m, RMSE = 2.54 m, and rRMSE = 10.75%). Compared with the least accurate Landsat 9 model, R increased by 29.58%, 93.48%, MAE by 44.64%, 46.20%, RMSE by 42.80%, 49.40%, and the rRMSE was increased by 42.86% and 49.32%, respectively. These results fully evaluate and discuss the practical performance and benefits of multi-source data retrieval of forest canopy height by combining space-borne lidar data with Landsat 9 data, which is of great significance for understanding forest structure and dynamics. The study provides a reliable methodology for estimating forest canopy height and valuable insights into forest resource management and its contribution to global climate change.

Funder

National Natural Science Foundation of China

Shanghai Committee of Science and Technology

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3