Author:
Li Xiaohan,Niu Shengtao,Bao Hong,Hu Naigang
Abstract
The inverse finite element method (iFEM) is one of the most effective deformation reconstruction techniques for shape sensing, which is widely applied in structural health monitoring. The distribution of strain sensors affects the reconstruction accuracy of the structure in iFEM. This paper proposes a method to optimize the layout of sensors rationally. Firstly, this paper constructs a dual-objective model based on the accuracy and robustness indexes. Then, an improved adaptive multi-objective particle swarm optimization (IAMOPSO) algorithm is developed for this model, which introduces initialization strategy, the adaptive inertia weight strategy, the guided particle selection strategy and the external candidate solution (ECS) set maintenance strategy to multi-objective particle swarm optimization (MOPSO). Afterwards, the performance of IAMOPSO is verified by comparing with MOPSO applied on the existing inverse beam model. Finally, the IAMOPSO is employed to the deformation reconstruction of complex plate-beam model. The numerical and experimental results demonstrate that the IAMOPSO is an excellent tool for sensor layout in iFEM.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献