Crack-Length Estimation for Structural Health Monitoring Using the High-Frequency Resonances Excited by the Energy Release during Fatigue-Crack Growth

Author:

Joseph Roshan,Mei HanfeiORCID,Migot AsaadORCID,Giurgiutiu VictorORCID

Abstract

Acoustic waves are widely used in structural health monitoring (SHM) for detecting fatigue cracking. The strain energy released when a fatigue crack advances has the effect of exciting acoustic waves, which travel through the structures and are picked up by the sensors. Piezoelectric wafer active sensors (PWAS) can effectively sense acoustic waves due to fatigue-crack growth. Conventional acoustic-wave passive SHM, which relies on counting the number of acoustic events, cannot precisely estimate the crack length. In the present research, a novel method for estimating the crack length was proposed based on the high-frequency resonances excited in the crack by the energy released when a crack advances. In this method, a PWAS sensor was used to sense the acoustic wave signal and predict the length of the crack that generated the acoustic event. First, FEM analysis was undertaken of acoustic waves generated due to a fatigue-crack growth event on an aluminum-2024 plate. The FEM analysis was used to predict the wave propagation pattern and the acoustic signal received by the PWAS mounted at a distance of 25 mm from the crack. The analysis was carried out for crack lengths of 4 and 8 mm. The presence of the crack produced scattering of the waves generated at the crack tip; this phenomenon was observable in the wave propagation pattern and in the acoustic signals recorded at the PWAS. A study of the signal frequency spectrum revealed peaks and valleys in the spectrum that changed in frequency and amplitude as the crack length was changed from 4 to 8 mm. The number of peaks and valleys was observed to increase as the crack length increased. We suggest this peak–valley pattern in the signal frequency spectrum can be used to determine the crack length from the acoustic signal alone. An experimental investigation was performed to record the acoustic signals in crack lengths of 4 and 8 mm, and the results were found to match well with the FEM predictions.

Funder

Office of Naval Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3