Delamination Depth Detection in Composite Plates Using the Lamb Wave Technique Based on Convolutional Neural Networks

Author:

Migot Asaad1ORCID,Saaudi Ahmed2,Giurgiutiu Victor3ORCID

Affiliation:

1. Department of Petroleum and Gas Engineering, College of Engineering, University of Thi-Qar, Nasiriyah 64001, Iraq

2. Department of Communication and Electronics Engineering, College of Engineering, University of AL-Muthanna, Samawah 66001, Iraq

3. Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA

Abstract

Delamination represents one of the most significant and dangerous damages in composite plates. Recently, many papers have presented the capability of structural health monitoring (SHM) techniques for the investigation of structural delamination with various shapes and thickness depths. However, few studies have been conducted regarding the utilization of convolutional neural network (CNN) methods for automating the non-destructive testing (NDT) techniques database to identify the delamination size and depth. In this paper, an automated system qualified for distinguishing between pristine and damaged structures and classifying three classes of delamination with various depths is presented. This system includes a proposed CNN model and the Lamb wave technique. In this work, a unidirectional composite plate with three samples of delamination inserted at different depths was prepared for numerical and experimental investigations. In the numerical part, the guided wave propagation and interaction with three samples of delamination were studied to observe how the delamination depth can affect the scattered and trapped waves over the delamination region. This numerical study was validated experimentally using an efficient ultrasonic guided waves technique. This technique involved piezoelectric wafer active sensors (PWASs) and a scanning laser Doppler vibrometer (SLDV). Both numerical and experimental studies demonstrate that the delamination depth has a direct effect on the trapped waves’ energy and distribution. Three different datasets were collected from the numerical and experimental studies, involving the numerical wavefield image dataset, experimental wavefield image dataset, and experimental wavenumber spectrum image dataset. These three datasets were used independently with the proposed CNN model to develop a system that can automatically classify four classes (pristine class and three different delamination classes). The results of all three datasets show the capability of the proposed CNN model for predicting the delamination depth with high accuracy. The proposed CNN model results of the three different datasets were validated using the GoogLeNet CNN. The results of both methods show an excellent agreement. The results proved the capability of the wavefield image and wavenumber spectrum datasets to be used as input data to the CNN for the detection of delamination depth.

Funder

Iraqi Ministry of Higher Education

Laboratory for Active Materials and Smart Structures

Publisher

MDPI AG

Reference57 articles.

1. Comparison of nondestructive testing methods on detection of delaminations in composites;Cheng;J. Sens.,2012

2. Structural Damage Identification Using Machine Learning Techniques: A Critical Review;Hakim;Rtcebe,2023

3. Deep learning-based crack damage detection technique for thin plate structures using guided lamb wave signals;Liu;Smart Mater. Struct.,2019

4. Vibration-based damage identification methods: A review and comparative study;Fan;Struct. Health Monit.,2011

5. Damage detection in composite materials using Lamb wave methods;Kessler;Smart Mater. Struct.,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3