An explainable variational autoencoder model for three-dimensional acoustic emission source localization in hollow cylindrical structures

Author:

Lee Guan-Wei1ORCID,Livadiotis Stylianos1ORCID,Salamone Salvatore1

Affiliation:

1. Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, USA

Abstract

We introduce an explainable variational autoencoder for three-dimensional (3D) localization of acoustic emission sources in hollow cylindrical structures, with an unsupervised approach. This research capitalizes on multi-arrival waveforms generated by helical path propagation in cylindrical geometries to enable efficient two-receiver localization. By integrating the modal characteristics of Lamb modes under multi-path conditions, we demonstrate that two sets of time-of-arrival differences and peak amplitudes extracted from one receiver can serve as effective localization features. This initial approach identifies four potential source locations, highlighting the feasibility of two-receiver source localization using traditional feature extraction methods. However, direct extraction can be challenging when mode overlaps occur, complicating the localization process. To address this, our work proposes a novel waveform-based method. This method leverages the consistent dispersion characteristics within isotropic materials, where each unique combination of mode arrival times and peak amplitudes constructs a distinct waveform. This distinctiveness overcomes the ambiguities associated with mode overlaps, significantly enhancing the method’s precision and robustness. Our approach adopts a data-driven strategy for waveform-based localization using variational autoencoder (VAE). VAE discerns waveform patterns for localization, while also addressing data uncertainties. The VAE’s encoder and decoder networks capture the localization process and the source’s influence on waveform generation, respectively, guiding latent variables to segregate waveforms by source in the latent space. The design of the learning process focuses on specific localization characteristics to enhance result explainability. Localization predictions are generated by projecting test waveforms, not included in the training set, onto a trained latent space. The prediction is determined using a nearest-neighbor approach based on the closest latent representation of a source. Validation with pencil-lead-break tests on a metallic pipe confirmed our method’s effectiveness, achieving an averaged 3D localization accuracy of 0.84.

Funder

Nuclear Energy University Program

Publisher

SAGE Publications

Reference40 articles.

1. Asme (2019) boiler and pressure vessel code section v- nondestructive examination, 2019.

2. Api-570 (2016) piping inspection code: In-service inspection, rating, repair, and alteration of piping systems, 2016.

3. Acoustic emission monitoring of corrosion in steel pipes using Lamb-type helical waves

4. Wear detection by means of wavelet-based acoustic emission analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3