Methodology for Detecting Progressive Damage in Structures Using Ultrasound-Guided Waves

Author:

Aranguren GerardoORCID,Bilbao Javier,Etxaniz JosuORCID,Gil-García José MiguelORCID,Rebollar Carolina

Abstract

Damage detection in structural health monitoring of metallic or composite structures depends on several factors, including the sensor technology and the type of defect that is under the spotlight. Commercial devices generally used to obtain these data neither allow for their installation on board nor permit their scalability when several structures or sensors need to be monitored. This paper introduces self-developed equipment designed to create ultrasonic guided waves and a methodology for the detection of progressive damage, such as corrosion damage in aircraft structures, i.e., algorithms for monitoring such damage. To create slowly changing conditions, aluminum- and carbon-reinforced polymer plates were placed together with seawater to speed up the corrosion process. The setup was completed by an array of 10 piezoelectric transducers driven and sensed by a structural health monitoring ultrasonic system, which generated 100 waveforms per test. The hardware was able to pre-process the raw acquisition to minimize the transmitted data. The experiment was conducted over eight weeks. Three different processing stages were followed to extract information on the degree of corrosion: hardware algorithm, pattern matching, and pattern recognition. The proposed methodology allows for the detection of trends in the progressive degradation of structures.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3