Assessment of Integration between Lactic Acid, Biogas and Hydrochar Production in OFMSW Plants

Author:

Zaccariello Lucio,Mastellone Maria Laura,D’Amelia Luisa Ida,Catauro MichelinaORCID,Morrone BiagioORCID

Abstract

Biological treatments such as anaerobic digestion and composting are known to be the most widespread methods to deal with Organic Fraction of Municipal Solid Waste (OFMSW). The production of biogas, a mix of methane and carbon dioxide, is worth but alone cannot solve the problems of waste disposal and recovery; moreover, the digestate could be stabilized by aerobic stabilization, which is one of the most widespread methods. The anaerobic digestion + composting integration converts 10% to 14% of the OFMSW into biogas, about 35–40% into compost and 35–40% into leachate. The economic sustainability could be rather increased by integrating the whole system with lactic acid production, because of the high added value and by substituting the composting process with the hydrothermal carbonization process. The assessment of this integrated scenario in term of mass balance demonstrates that the recovery of useful products with a potentially high economic added value increases, at the same time reducing the waste streams outgoing the plant. The economic evaluation of the operating costs for the traditional and the alternative systems confirms that the integration is a valid alternative and the most interesting solution is the utilization of the leachate produced during the anaerobic digestion process instead of fresh water required for the hydrothermal carbonization process.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference36 articles.

1. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050

2. Quantifying household waste of fresh fruit and vegetables in the EU

3. Preparatory Study on Food Waste Across EU 27;Monier,2010

4. Food Losses and Waste—Inventory and Management at Each Stage in the Food Chain,2016

5. Food Waste Accounting—Methodologies, Challenges and Opportunities;Caldeira,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3