Molecular Insight into the Pharmacological Potential of Clerodendrum minahassae Leaf Extract for Type-2 Diabetes Management Using the Network Pharmacology Approach

Author:

Fatimawali 1ORCID,Tallei Trina Ekawati23ORCID,Kepel Billy Johnson4,Bodhi Widdhi4,Manampiring Aaltje Ellen4,Nainu Firzan5ORCID

Affiliation:

1. Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia

2. Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia

3. Department of Biology, Faculty of Medicine, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia

4. Department of Chemistry, Faculty of Medicine, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia

5. Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, South Sulawesi, Indonesia

Abstract

Background and Objectives: The increasing occurrence and prevalence of type-2 diabetes mellitus (T2DM) have led to a growing interest in researching available treatment alternatives. Clerodendrum minahassae, a native plant species of North Sulawesi, has been a focus of ethnopharmacological studies due to its significance contributions to drug development, particularly its potential antidiabetic properties. This study investigated the pharmacological potential of Clerodendrum minahassae (CM) leaf extract for managing type-2 diabetes (T2DM) using a network pharmacology approach. Materials and Methods: Active compounds were extracted from CM leaves, and their interactions with target proteins in T2DM were explored through various in silico analyses. Results: SAR analysis using Way2Drug Pass Online identified 29 bioactive CM leaf extract compounds with promise as T2DM treatments. Additionally, 26 of these met Ro5 criteria for favorable drug-likeness. Most compounds exhibited positive pharmacodynamic and pharmacokinetic profiles, with 22 considered safe, while 7 posed potential toxicity risks when ingested individually. CM leaf extract targeted 60 T2DM-related proteins, potentially affecting T2DM via cytokine regulation, particularly in proteins linked to metabolic processes, cellular response to angiotensin, and the sphingosine-1-phosphate signaling pathway. The network pharmacology analysis identified five genes targeted by CM leaf extract, namely, STAT3, MAPK1, ESR1, PIK3R1, and NFKB1. Among these genes, PIK3R1’s interaction with the insulin receptor (INSR) positions it as a crucial candidate gene due to its pivotal role in insulin signal transduction during T2DM development. Conclusions: This research sheds light on the therapeutic potential of CM leaf extract for treating T2DM. This potential is attributed to the diverse array of bioactive compounds present in the extract, which have the capacity to interact with and inhibit proteins participating in the insulin signal transduction pathway crucial for the progression of T2DM. The findings of this study may open up possibilities for future applications of CM leaf extract in the development of novel T2DM treatments.

Funder

Directorate of Research, Technology, and Community Service of the Ministry of Education

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3