Effect of Diabetic Neuropathy on Reparative Ability and Immune Response System
-
Published:2023-07-31
Issue:
Volume:
Page:
-
ISSN:1073-6085
-
Container-title:Molecular Biotechnology
-
language:en
-
Short-container-title:Mol Biotechnol
Author:
Sher Emina Karahmet, Prnjavorac Besim, Farhat Esma Karahmet, Palić Benjamin, Ansar Sabah, Sher FarooqORCID
Abstract
AbstractThe effects of diabetes can be divided into short, medium and long term and various human organ systems can be effected. The present study aimed to determine how much the duration of diabetes mellitus (DM) affect the reparative ability of the body, immune response and the development of DM complications. Interleukin 1-β (IL-1β) and Interleukin 6 (IL-6) were monitored as specific indicators of inflammatory reaction and C-reactive protein (CRP), leukocyte count (WBC) and sedimentation rate (ESR) as general markers of inflammatory reaction. Tumour necrosis factor α (TNF-α) and transforming growth factor β1 (TGF-β1) were observed as indicators of reparative ability and polyneuropathy. All interleukins were determined by ELISA and evaluated spectrophotometrically. Michigan Neuropathy Screening Instrument (MNSI) is performed for neuropathy examination. Patients with diabetes mellitus were divided into 3 groups, according to duration of diabetes mellitus. IL-6 levels correlated with clinical stage of diabetic polyneuropathy at p = 0.025 R = 0.402; with CRP at p = 0.0001, R = 0.784 as well as correlation of CRP and MNSI score (R = 0.500, p = 0.034) in a group of patients with DM lasting up to 10 years. The reparative ability of the body is reduced by physiological age and ages of DM duration. The immune response is weakened in DM additionally. The dual activity of cytokines IL-6 and TGF-β1 is present in long-duration Diabetes Mellitus.
Funder
King Saud University International Society of Engineering Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Molecular Biology,Applied Microbiology and Biotechnology,Biochemistry,Bioengineering,Biotechnology
Reference60 articles.
1. Lee, Y. S., Wollam, J., & Olefsky, J. M. (2018). An integrated view of immunometabolism. Cell, 172(1–2), 22–40. 2. Sher, E. K., Ćosović, A., Džidić-Krivić, A., Farhat, E. K., Pinjić, E., & Sher, F. (2023). COVID-19 a triggering factor of autoimmune and multi-inflammatory diseases. Life Sciences, 319, 121531. 3. Cho, N. H., Shaw, J., Karuranga, S., Huang, Y., da Rocha Fernandes, J., Ohlrogge, A., & Malanda, B. (2018). IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271–281. 4. Callaghan, B. C., Cheng, H. T., Stables, C. L., Smith, A. L., & Feldman, E. L. (2012). Diabetic neuropathy: Clinical manifestations and current treatments. The Lancet Neurology, 11(6), 521–534. 5. Samakidou, G., Eleftheriadou, I., Tentolouris, A., Papanas, N., & Tentolouris, N. (2021). Rare diabetic neuropathies: It is not only distal symmetrical polyneuropathy. Diabetes Research Clinical Practice, 177, 108932.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|