Processing of Carbon Nanoparticle-Enriched AISI H11 Tool Steel Powder Mixtures in DED-LB/M for the AM of Forging Tools with Tailored Properties (Part II): Influence of Nanoscale Carbon Additives on Microstructure and Mechanical Properties

Author:

Hentschel Oliver12,Kohlstruck Jan1,Krakhmalev Pavel3ORCID,Nikas Dimitrios3,Schmidt Michael12ORCID

Affiliation:

1. Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Konrad-Zuse-Straße 3/5, 91052 Erlangen, Germany

2. Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 6, 91052 Erlangen, Germany

3. Department of Engineering and Physics, Karlstad University, SE-651 88 Karlstad, Sweden

Abstract

A promising approach for producing parts with outstanding properties in directed energy deposition (DED-LB/M) provides the application of tailored powder mixtures processed by applying in situ alloying strategies. In this work, DED-LB/M was used to manufacture multilayer specimens from AISI H11 steel powders enriched with carbon nanoparticles (C-np) in concentrations of 0.1 wt.-% and 0.2 wt.-%. The scientific aim was to investigate the impact of C-np on the microstructural (particularly retained austenite content (RA-c) and grain size) and mechanical properties (specifically hardness and compression yield strength) of the manufactured specimens. It was shown that the addition of C-np to the H11 powder leads to a stronger distortion of martensite as well as significantly enhancing the RA-c. Furthermore, the C-np seem to favor the formation of finer martensite, as can be verified with XRD and EBSD. Under as-built conditions, the mean hardness increases from 653 ± 10 HV1 for the H11 sample to 770 ± 14 HV1 for the sample reinforced with 0.2 wt.-% C-np. At the same time, Y0.2% rises up from 1839 ± 61 MPa to 2134 ± 68 MPa. The hardness- and strength-increasing effect of the added C-np is retained even after heat treatment, similarly to the industrial standard.

Funder

School of Advanced Optical Technology (SAOT) of the University Erlangen-Nürnberg

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3