Abstract
Nowadays, high-entropy alloys (HEAs) have become a hot research topic in the field of coating materials. However, HEAs have a large wide range of compositional systems, and the differences in their composition inevitably lead to the significant variations in the matching process parameters of laser cladding and post-treatment methods, which in turn give the coatings a broad range of microstructures and protective properties. Therefore, it is crucial to review and summarize the research progresses on laser cladding HEA coatings to provide a reference for obtaining high-performance HEA coatings and further expand the application of HEA coatings. This work describes the working mechanism of laser cladding and illustrates the advantages and drawbacks of laser cladding in detail. The effects of the addition of alloying elements, process parameters and post-treatment techniques on the microstructures and properties of the coatings are thoroughly reviewed and analyzed. In addition, the correlations between the chemical compositions of HEAs, process parameters of laser cladding, post-treatment techniques and the microstructure and protective properties of the coatings are investigated and summarized. On this basis, the future development direction of HEA coatings is outlined.
Funder
National Natural Science Foundation of China
National Key Laboratory Foundation of China
Shandong Provincial Natural Science Foundation
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献