Experimental Investigations in the Processing of AISI H11 Powder Blends Enriched with Tungsten Carbide Nanoparticles for the Additive Manufacturing of Tailored Hot Working Tools in the Directed Energy Deposition (DED-LB/M)—Impact of Tungsten Carbide Nanoparticles on Microstructural and Mechanical Characteristics

Author:

Hentschel Oliver12,Kohlstruck Jan1,Vetter Johannes12ORCID,Wittmann Alexander12ORCID,Krakhmalev Pavel3ORCID,Nikas Dimitrios3,Schmidt Michael12ORCID

Affiliation:

1. Institute of Photonic Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany

2. Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany

3. Department of Engineering and Physics, Karlstad University, SE-651 88 Karlstad, Sweden

Abstract

In this study, the DED-LB/M process of AISI H11 tool steel powder blends modified by adding WC nanoparticles (WC-np) in concentrations of 1, 2.5 and 5 wt.-% was the object of scientific investigations. For this, 30-layer cuboid specimens were manufactured. The overall scientific aim was to examine how the WC-np interact with the steel melt and in the end, influence the processability, microstructure and mechanical properties of produced specimens. The examinations were carried out on both as-built and thermally post-processed specimens. An advanced microstructural analysis (SEM, EDS, EBSD and XRD) revealed that due to the high solubility of WC-np in the molten steel, most of the WC-np appear to have dissolved during the ongoing laser process. Furthermore, the WC-np favor a stronger distortion and finer grain size of martensite in the manufactured specimens. An increase in hardness from about 650 HV1 for the H11 specimen to 780 HV1 for the one manufactured using the powder blend containing 5 wt.-% of WC-np was observed in as-built conditions. In the same way, the compression yield strength enhanced from 1839 MPA to 2188 MPA. The hardness and strength increasing effect of WC-np remained unchanged even after heat treatments similar to those used in industry.

Funder

School of Advanced Optical Technology (SAOT) of the University Erlangen-Nürnberg

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3