Dielectric Response and Structural Analysis of (A3+, Nb5+) Cosubstituted CaCu3Ti4O12 Ceramics (A: Al and Bi)

Author:

Kotb Hicham Mahfoz,Ahmad Mohamad M.ORCID,Alshoaibi AdilORCID,Yamada Koji

Abstract

CaCu3Ti4-x((A0.05Nb0.05))xO12 ceramics (A: Al and Bi; x = 0, 0.3) were synthesized by high-energy mechanical ball milling and reactive sintering at 1050 °C in air. Rietveld refinement of XRD data revealed the pure and (Al3+, Nb5+) cosubstituted ceramics contained a minor CuO secondary phase with a mole fraction of about 3.2% and 6.9%, respectively, along with a CaCu3Ti4O12 (CCTO)-like cubic structure. In addition, (Bi3+, Nb5+) cosubstituted ceramics had a pyrochlore (Ca2(Ti, Nb)2O7) secondary phase of about 18%. While the (Al3+, Nb5+) cosubstituted CCTO showed the highest relative permittivity (ε’ = 3.9 × 104), pure CCTO showed the lowest dielectric loss (tanδ = 0.023) at 1 kHz and 300 K. Impedance-spectroscopy (IS) measurements showed an electrically heterogeneous structure for the studied ceramics, where a semiconducting grain was surrounded by highly resistive grain boundary. The giant relative permittivity of the ceramics was attributed to the Maxwell–Wagner polarization effect at the blocking grain boundaries and domain boundaries. The higher tanδ of the cosubstituted samples was correlated with their lower grain boundary’s resistivity, as confirmed by IS analysis. Modulus-spectrum analysis revealed two relaxation processes for the pure and (Bi3+, Nb5+) cosubstituted CCTO samples. Dissimilar behavior was observed for the (Al3+, Nb5+) cosubstituted CCTO, where three relaxation mechanisms were observed and attributed to the grain, domain-boundary, and grain-boundary responses.

Funder

Deanship of Scientific Research, King Faisal University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3