A Single Stage and Single View 3D Point Cloud Reconstruction Network Based on DetNet

Author:

Li BinORCID,Zhu Shiao,Lu Yi

Abstract

It is a challenging problem to infer objects with reasonable shapes and appearance from a single picture. Existing research often pays more attention to the structure of the point cloud generation network, while ignoring the feature extraction of 2D images and reducing the loss in the process of feature propagation in the network. In this paper, a single-stage and single-view 3D point cloud reconstruction network, 3D-SSRecNet, is proposed. The proposed 3D-SSRecNet is a simple single-stage network composed of a 2D image feature extraction network and a point cloud prediction network. The single-stage network structure can reduce the loss of the extracted 2D image features. The 2D image feature extraction network takes DetNet as the backbone. DetNet can extract more details from 2D images. In order to generate point clouds with better shape and appearance, in the point cloud prediction network, the exponential linear unit (ELU) is used as the activation function, and the joint function of chamfer distance (CD) and Earth mover’s distance (EMD) is used as the loss function of 3DSSRecNet. In order to verify the effectiveness of 3D-SSRecNet, we conducted a series of experiments on ShapeNet and Pix3D datasets. The experimental results measured by CD and EMD have shown that 3D-SSRecNet outperforms the state-of-the-art reconstruction methods.

Funder

Science and Technology Development Plan Project of Jilin Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

1. Point Cloud Interaction and Manipulation in Virtual Reality;Garrido;Proceedings of the 2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR),2021

2. Predicting 3D shapes, masks, and properties of materials inside transparent containers, using the TransProteus CGI dataset

3. TransLoc3D: Point Cloud based Large-scale Place Recognition using Adaptive Receptive Fields;Xu;arXiv,2021

4. A Point Set Generation Network for 3D Object Reconstruction from a Single Image

5. 3D-LMNet: Latent embedding matching for accurate and diverse 3D point cloud reconstruction from a single image;Mandikal;arXiv,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3