3DRecNet: A 3D Reconstruction Network with Dual Attention and Human-Inspired Memory

Author:

Shoukat Muhammad Awais1ORCID,Sargano Allah Bux1ORCID,You Lihua2,Habib Zulfiqar1ORCID

Affiliation:

1. Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan

2. National Centre for Computer Animation, Bournemouth University, Poole BH12 5BB, Dorset, UK

Abstract

Humans inherently perceive 3D scenes using prior knowledge and visual perception, but 3D reconstruction in computer graphics is challenging due to complex object geometries, noisy backgrounds, and occlusions, leading to high time and space complexity. To addresses these challenges, this study introduces 3DRecNet, a compact 3D reconstruction architecture optimized for both efficiency and accuracy through five key modules. The first module, the Human-Inspired Memory Network (HIMNet), is designed for initial point cloud estimation, assisting in identifying and localizing objects in occluded and complex regions while preserving critical spatial information. Next, separate image and 3D encoders perform feature extraction from input images and initial point clouds. These features are combined using a dual attention-based feature fusion module, which emphasizes features from the image branch over those from the 3D encoding branch. This approach ensures independence from proposals at inference time and filters out irrelevant information, leading to more accurate and detailed reconstructions. Finally, a Decoder Branch transforms the fused features into a 3D representation. The integration of attention-based fusion with the memory network in 3DRecNet significantly enhances the overall reconstruction process. Experimental results on the benchmark datasets, such as ShapeNet, ObjectNet3D, and Pix3D, demonstrate that 3DRecNet outperforms existing methods.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3