Condition-Based Maintenance Optimization Method Using Performance Margin

Author:

Li Shuyu12,Wen Meilin12ORCID,Zu Tianpei23,Kang Rui12ORCID

Affiliation:

1. School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

2. The Key Laboratory on Reliability and Environmental Engineering Technology, Beihang University, Beijing 100191, China

3. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Abstract

As a maintenance strategy to reduce unexpected failures and enable safe operation, condition-based maintenance (CBM) has been widely used in recent years. The maintenance decision criteria of CBM in the literature mostly originate from statistical failure data or degradation states, few of which can directly and effectively reflect the current state and analyze condition monitoring data, maintenance measures, and reliability together at the same time. In this paper, we introduce the performance margin as a decision criterion of CBM. We propose a condition-based maintenance optimization method using performance margin. Considering a CBM optimization problem for a degrading and periodically inspected component, a newly developed performance margin degradation model is established when three different maintenance measures become involved. Maintenance measure effect factors, maintenance decision vectors, and maintenance measure threshold vectors are developed to update the degradation model. And to build a maintenance optimization model, both cost and loss related to maintenance decision problems and reliability obtained by performance margin have been taken into consideration. Finally, a numerical example is provided to illustrate the proposed optimization method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3