Joint Optimization of Condition-Based Maintenance and Performance Control for Linear Multi-State Consecutively Connected Systems

Author:

Wang Jun1,Wang Yuyang1ORCID,Fu Yuqiang2

Affiliation:

1. International Business School, Beijing Foreign Studies University, Beijing 100089, China

2. School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Industrial systems such as signal relay stations and oil pipeline systems can be modeled as linear multi-state consecutively connected systems, which comprise sequentially ordered elements and fail if the first and the final elements are not connected. The performance level of each element is controllable, which determines how many elements an element can connect and affects its degradation rate. Accumulated degradation can cause element failure, which may lead to costly system failure. This paper aims to minimize long-term maintenance-related costs, including system failure costs. We provide optimal maintenance planning and performance control for every system degradation state through Markov decision process modeling and a dynamic programming algorithm. Load-sharing, restricted maintenance capacity, maintenance setup costs, and the structural characteristics of the system are considered in the model, all of which influence the optimal maintenance and performance control policy. Regarding degradation management, reducing the difference in degradation levels between elements, e.g., replacing more-degraded elements first, can be cost-effective. However, increasing the difference in degradation by maintenance or performance control can also lower maintenance-related costs in specific situations, which is discussed in numerical experiments. We also illustrate structural insights regarding the proposed model, including sensitivity analyses of maintenance capacity, setup costs, and the difference between preventive and corrective replacement costs.

Funder

National Natural Science Foundation of China

Beijing Foreign Studies University ‘Double First Class’ Major Landmark Project

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3