An Optimal Opportunistic Maintenance Planning Integrating Discrete- and Continuous-State Information

Author:

Wei Fanping1ORCID,Wang Jingjing2,Ma Xiaobing1,Yang Li1ORCID,Qiu Qingan3

Affiliation:

1. School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China

2. School of Management Engineering, Qingdao University of Technology, Qingdao 266520, China

3. School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China

Abstract

Information-driven group maintenance is crucial to enhance the operational availability and profitability of diverse industrial systems. Existing group maintenance models have primarily concentrated on a single health criterion upon maintenance implementation, where the fusion of multiple health criteria is rarely reported. However, this is not aligned with actual maintenance planning of multi-component systems on many occasions, where multi-source health information can be integrated to support robust decision making. Additionally, how to improve maintenance effectiveness through a scientific union of both scheduled and unscheduled maintenance remains a challenge in group maintenance. This study addresses these research gaps by devising an innovative multiple-information-driven group replacement policy for serial systems. In contrast to existing studies, both discrete-state information (hidden defect) and continuous degradation information are employed for group maintenance planning, and scheduled postponed maintenance and unscheduled opportunistic maintenance are dynamically integrated for the first time to mitigate downtime loss. To be specific, inspections are equally spaced to reveal system health states, followed by the multi-level replacement implemented when either (a) the degradation of the continuously degrading unit reaches a specified threshold, or (b) the age of the multi-state unit since the defect’s identification reaches a pre-set age (delayed replacement). Such scheduling further enables the implementation of multi-source opportunistic replacement to alleviate downtime. The Semi-Markov Decision Process (SMDP) is utilized for the collaborative optimization of continuous- and discrete-state thresholds, so as to minimize the operational costs. Numerical experiments conducted on the critical structure of circulating pumps verify the model’s applicability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3