An Advanced Framework for Predictive Maintenance Decisions: Integrating the Proportional Hazards Model and Machine Learning Techniques under CBM Multi-Covariate Scenarios

Author:

Godoy David R.1ORCID,Mavrakis Constantino1,Mena Rodrigo1,Kristjanpoller Fredy1ORCID,Viveros Pablo1ORCID

Affiliation:

1. Predictive Lab, Department of Industrial Engineering, Universidad Técnica Federico Santa María, Avenida Santa María 6400, Santiago 7630000, Chile

Abstract

Under Condition-Based Maintenance, the Proportional Hazards Model (PHM) uses Cox’s partial regression and vital signs as covariates to estimate risk for predictive management. However, maintenance faces challenges when dealing with a multi-covariate scenario due to the impact of the conditions’ heterogeneity on the intervention decisions, especially when the combined measurement lacks a physical interpretation. Therefore, we propose an advanced framework based on a PHM-machine learning formulation integrating four key areas: covariate prioritization, covariate weight estimation, state band definition, and the generation of an enhanced predictive intervention policy. The paper validates the framework’s effectiveness through a comparative analysis of reliability metrics in a case study using real condition monitoring data from an energy company. While the traditional log-likelihood minimization may fall short in covariate weight estimation, sensitivity analyses reveal that the proposed policy using IPOPT and a non-scaler transformation results in consistent prediction quality. Given the challenge of interpreting merged covariates, the scheme yields improved results compared to expert criteria. Finally, the advanced framework strengthens the PHM modeling by coherently integrating diverse covariate scenarios for predictive maintenance purposes.

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3