Power Pylon Reconstruction from Airborne LiDAR Data Based on Component Segmentation and Model Matching

Author:

Qiao Yiya,Xi XiaohuanORCID,Nie Sheng,Wang PuORCID,Guo HaoORCID,Wang Cheng

Abstract

In recent years, with the rapid growth of State Grid digitization, it has become necessary to perform three-dimensional (3D) reconstruction of power elements with high efficiency and precision to achieve full coverage when simulating important transmission lines. Limited by the performance of acquisition equipment and the environment, the actual scanned point cloud usually has problems such as noise interference and data loss, presenting a great challenge for 3D reconstruction. This study proposes a model-driven 3D reconstruction method based on Airborne LiDAR point cloud data. Firstly, power pylon redirection is realized based on the Principal Component Analysis (PCA) algorithm. Secondly, the vertical and horizontal distribution characteristics of the power pylon point cloud and the graphical characteristics of the overall two-dimensional (2D) orthographic projection are analyzed to determine segmentation positions and the key segmentation position of the power pylon. The 2D alpha shape algorithm is adopted to obtain the pylon body contour points, and then the pylon feature points are extracted and corrected. Based on feature points, the components of original pylon and model pylon are registered, and the distance between the original point cloud and the model point cloud is calculated at the same time. Finally, the model with the highest matching degree is regarded as the reconstructed model of the pylon. The main advantages of the proposed method include: (1) identifying the key segmentation position according to the graphical characteristics; (2) for some pylons with much missing data, the complete model can be accurately reconstructed. The average RMSE (Root-Mean-Square Error) of all power pylon components in this study was 15.4 cm. The experimental results reveal that the effects of power pylon structure segmentation and reconstruction are satisfactory, which provides method and model support for digital management and security analysis of transmission lines.

Funder

National Key R&D Program of China

the Youth Innovation Promotion Association Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3