Abstract
The security of high-voltage power transmission corridors is significantly vital to the national economy and daily life. With its rapid development, LiDAR (Light Detection and Ranging) technology has been widely applied in the inspection of transmission lines. As the basis of potential hazard detection, a robust and precise power line model is a necessary requirement for rapid and correct clearance. Thus, this paper proposes a novel method for high-voltage bundle conductor reconstruction, which can precisely reconstruct each sub-conductor. First, points in high-voltage power transmission corridors are detected and classified into four categories; second, for classified power lines, single power line spans are extracted, and bundle conductors are identified by analyzing the single spans’ fitting residuals; and then, each sub-conductor of bundle conductors is extracted by a projected dichotomy method on the XOY and XOZ planes, respectively; finally, a double-RANSAC (random sample consensus)-based algorithm was introduced to reconstruct each power line. The proposed method makes use of the distribution of bundle conductors in high-voltage transmission lines, and our experiments showed that it could preferably reconstruct the real structure of bundle conductors robustly with a high precision better than 0.2 m.
Subject
General Earth and Planetary Sciences
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献