Deep Learning Based Electric Pylon Detection in Remote Sensing Images

Author:

Qiao Sijia,Sun Yu,Zhang HaopengORCID

Abstract

The working condition of power network can significantly influence urban development. Among all the power facilities, electric pylon has an important effect on the normal operation of electricity supply. Therefore, the work status of electric pylons requires continuous and real-time monitoring. Considering the low efficiency of manual detection, we propose to utilize deep learning methods for electric pylon detection in high-resolution remote sensing images in this paper. To verify the effectiveness of electric pylon detection methods based on deep learning, we tested and compared the comprehensive performance of 10 state-of-the-art deep-learning-based detectors with different characteristics. Extensive experiments were carried out on a self-made dataset containing 1500 images. Moreover, 50 relatively complicated images were selected from the dataset to test and evaluate the adaptability to actual complex situations and resolution variations. Experimental results show the feasibility of applying deep learning methods to electric pylon detection. The comparative analysis can provide reference for the selection of specific deep learning model in actual electric pylon detection task.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3