Content and Availability of Minerals in Plant-Based Burgers Compared with a Meat Burger

Author:

Latunde-Dada Gladys O.1ORCID,Kajarabille Naroa123ORCID,Rose Sophie1,Arafsha Sarah M.1,Kose Tugba1ORCID,Aslam Mohamad F.1,Hall Wendy L.1ORCID,Sharp Paul A.1

Affiliation:

1. Department of Nutritional Sciences, School of Life Course Sciences, King’s College London, Franklin-Wilkins-Building, 150 Stamford Street, London SE1 9NH, UK

2. Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain

3. Nutrition and Obesity Group, Department of Pharmacy and Food Science, Lucio Lascaray Research Institute, University of the Basque Country (UPV/EHU), 01006 Vitoria, Spain

Abstract

Increasing numbers of individuals follow plant-based diets. This has sparked interest in the nutritional evaluation of the meat substitute sector. Nutritional understanding of these products is vital as plant-based eating becomes more common. For example, animal products are rich sources of iron and zinc, and plant-based foods could be inadequate in these minerals. The main aim was to analyse the mineral composition and absorption from a range of plant-based meat-free burgers and compare them to a typical beef burger. Total and bioaccessible mineral contents of plant-based burgers and a beef burger were determined using microwave digestion and in vitro simulated gastrointestinal digestion, respectively. Mineral bioavailability was analysed by in vitro simulated gastrointestinal digestion of foods, followed by exposure of Caco-2 cells to the sample digests and assessment of mineral uptake. Mineral quantification for all samples was achieved using inductively coupled ICP-optical emission spectrometry (ICP-OES). The content of minerals varied significantly amongst the burgers. Significantly greater quantities of Fe and Zn were found in the beef burger compared to most meat substitutes. Bioaccessible Fe was significantly higher in the beef compared to most of the plant-based meat alternatives; however, bioavailable Fe of most plant-based burgers was comparable to beef (p > 0.05). Similarly, bioaccessible Zn was significantly (p < 0.001) higher from the beef burger. Moreover, beef was superior regarding bioavailable Zn (p ≤ 0.05–0.0001), with only the mycoprotein burger displaying comparable Zn bioavailability (p > 0.05). Beef is an excellent source of bioaccessible Fe and Zn compared to most plant-based substitutes; however, these plant-based substitutes were superior sources of Ca, Cu, Mg and Mn. The quantity of bioaccessible and absorbable Fe varies dramatically among the meat alternatives. Plant-based burgers have the potential to provide adequate quantities of iron and zinc to those consuming such burgers as part of a varied diet. Thus, guiding consumer choices will depend on the variety of the vegetable constituents and their iron nutritional quality in different burgers.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Reference50 articles.

1. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems;Willett;Lancet,2019

2. Health effects of vegan diets;Craig;Am. J. Clin. Nutr.,2009

3. Iron status of vegetarians;Craig;Am. J. Clin. Nutr.,1994

4. The Effects of Vegetarian and Vegan Diets on Gut Microbiota;Tomova;Front. Nutr.,2019

5. Consumption of meat and dairy substitute products amongst vegans, vegetarians and pescatarians;Tonheim;Food Nutr. Res.,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3