Assessing the Protein Quality, In Vitro Intestinal Iron Absorption and Human Faecal Microbiota Impacts of Plant-Based Mince

Author:

Belobrajdic Damien P.12,Osborne Simone3,Conlon Michael1,Brook Henri1,Addepalli Rama3,Muhlhausler Beverly S.145

Affiliation:

1. Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide, SA 5000, Australia

2. College of Medicine and Public Health, Health Flinders University, Bedford Park, SA 5042, Australia

3. Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD 4067, Australia

4. School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia

5. South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia

Abstract

The nutritional quality of plant-based meat analogues compared to traditional meat products has been questioned in recent commentary, particularly in relation to protein quality and micronutrient bioavailability. However, the attributes of specific products within this category are unclear. We therefore undertook a comprehensive assessment of the compositional and functional attributes of v2food® (Sydney, Australia) plant-based mince, including an assessment of the effects of reformulation, including the addition of amino acids, ascorbic acid, and different forms of elemental iron. The protein digestibility and protein quality of v2food® plant-based mince were comparable to beef mince in the standardized INFOGEST system, and favourable effects on microbiota composition and short-chain fatty acid (SCFA) production were demonstrated in an in vitro digestion system. The use of ferrous sulphate as an iron source improved in vitro intestinal iron absorption by ~50% in comparison to other forms of iron (p < 0.05), although levels were ~3-fold lower than beef mince, even in the presence of ascorbic acid. In conclusion, the current study identified some favourable nutritional attributes of plant-based v2food® mince, specifically microbiota and SCFA changes, as well as other areas where further reformulation could be considered to further enhance the bioavailability of key nutrients. Further studies to assess the effect of plant-based meat analogues on health measures in vivo will be important to improve knowledge in this area.

Funder

v2food® pty Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3