Change Detection Based on Multi-Feature Clustering Using Differential Evolution for Landsat Imagery

Author:

Song Mi,Zhong YanfeiORCID,Ma Ailong

Abstract

Change detection (CD) of natural land cover is important for environmental protection and to maintain an ecological balance. The Landsat series of satellites provide continuous observation of the Earth’s surface and is sensitive to reflection of water, soil and vegetation. It offers fine spatial resolutions (15–80 m) and short revisit times (16–18 days). Therefore, Landsat imagery is suitable for monitoring natural land cover changes. Clustering-based CD methods using evolutionary algorithms (EAs) can be applied to Landsat images to obtain optimal changed and unchanged clustering centers (clusters) with minimum clustering index. However, they directly analyze difference image (DI), which finds itself subject to interference by Gaussian noise and local brightness distortion in Landsat data, resulting in false alarms in detection results. In order to reduce image interferences and improve CD accuracy, we proposed an unsupervised CD method based on multi-feature clustering using the differential evolution algorithm (M-DECD) for Landsat Imagery. First, according to characteristics of Landsat data, a multi-feature space is constructed with three elements: Wiener de-noising, detail enhancement, and structural similarity. Then, a CD method based on differential evolution (DE) algorithm and fuzzy clustering is proposed to obtain global optimal clusters in the multi-feature space, and generate a binary change map (CM). In addition, the control parameters of the DE algorithm are adjusted to improve the robustness of M-DECD. The experimental results obtained with four Landsat datasets confirm the effectiveness of M-DECD. Compared with the results of conventional methods and the current state-of-the-art methods based on evolutionary clustering, the detection accuracies of the M-DECD on the Mexico dataset and the Sardinia dataset are very close to the best results. The accuracies of the M-DECD in the Alaska dataset and the large Canada dataset increased by about 3.3% and 11.9%, respectively. This indicates that multiple features are suitable for Landsat images and the DE algorithm is effective in searching for an optimal CD result.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3