Identifying Coastal Wetlands Changes Using a High-Resolution Optical Images Feature Hierarchical Selection Method

Author:

Wu Ruijuan,Wang Jing

Abstract

Coastal wetlands are dynamic and fragile ecosystems where complex changes have taken place. As they are affected by environmental changes and human activities, it is of great practical significance to monitor coastal wetlands changes regularly. High-resolution optical data can observe changes in coastal wetlands, however, the impact of different optical features on the identification of changes in coastal wetlands is not clear. Simultaneously, the combination of many features could cause the “dimension disaster” problem. In addition, only small amounts of training samples are accessible at pre- or post-changed time. In order to solve the above problems, the feature hierarchical selection method is proposed, taking into account the jumping degree of different image features. The influence of different optical features on wetland classification was analyzed. In addition, a training samples transfer learning strategy was designed for wetland classification, and the classification result at pre- and post-changed times were compared to identify the “from-to” coastal wetlands changes. The southeastern coastal wetlands located in Jiangsu Province were used as a study area, and ZY-3 images in 2013 and 2018 were used to verify the proposed methods. The results show that the feature hierarchical selection method can provide a quantitative reference for optimal subset feature selection. A training samples transfer learning strategy was used to classify post-changed optical data, the overall accuracy of transferred training samples was 91.16%, and it ensures the accuracy requirements for change identification. In the study area, the salt marsh increased mainly from the sea area, because salt marshes expand rapidly throughout coastal areas, and aquaculture ponds increased from the sea area and salt marshes, because of the considerable economic benefits of the aquacultural industry.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3