Quantifying the Reflectance Anisotropy Effect on Albedo Retrieval from Remotely Sensed Observations Using Archetypal BRDFs

Author:

Zhang Hu,Jiao Ziti,Chen Lei,Dong YadongORCID,Zhang Xiaoning,Lian Yi,Qian Da,Cui Tiejun

Abstract

The reflectance anisotropy effect on albedo retrieval was evaluated using the Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance distribution functions (BRDFs) product, and archetypal BRDFs. Shortwave-band archetypal BRDFs were established, and validated, based on the Anisotropy Flat indeX (AFX) and time series MODIS BRDF over tile h11v03. To generate surface albedo, archetypal BRDFs were used to fit simulated reflectance, based on the least squares method. Albedo was also retrieved based on the least root-mean-square-error (RMSE) method or normalized difference vegetation index (NDVI) based prior BRDF knowledge. The difference between those albedos and the MODIS albedo was used to quantify the reflectance anisotropy effect. The albedo over tile h11v03 for day 185 in 2009 was retrieved from single directional reflectance and the third archetypal BRDF. The results show that six archetypal BRDFs are sufficient to represent the reflectance anisotropy for albedo estimation. For the data used in this study, the relative uncertainty caused by reflectance anisotropy can reach up to 7.4%, 16.2%, and 20.2% for sufficient, insufficient multi-angular and single directional observations. The intermediate archetypal BRDFs may be used to improve the albedo retrieval accuracy from insufficient or single observations with a relative uncertainty range of 8–15%.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference54 articles.

1. Land surface processes and climate surface albedos and energy balance;Dickinson;Adv. Geophys.,1983

2. Systematic Observation Requirements for Satellite-Based Products for Climate, 2011 Update, Supplemental Details to the Satellite-Based Component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update);Lahoz,2011

3. Surface albedo data for climatic modeling

4. Derivation of diurnal courses of albedo and reflected solar irradiance from airborne POLDER data acquired near solar noon

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3