Directional Applicability Analysis of Albedo Retrieval Using Prior BRDF Knowledge

Author:

Zhang Hu1ORCID,Xi Qianrui1,Xie Junqin1,Zhang Xiaoning2ORCID,Chen Lei1,Lian Yi1,Cao Hongtao1,Liu Yan3ORCID,Cui Lei4ORCID,Dong Yadong3ORCID

Affiliation:

1. School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China

2. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

4. Navigation College, Jimei University, Xiamen 361001, China

Abstract

Surface albedo measures the proportion of incoming solar radiation reflected by the Earth’s surface. Accurate albedo retrieval from remote sensing data usually requires sufficient multi-angular observations to account for the surface reflectance anisotropy. However, most middle and high-resolution remote sensing satellites lack the capability to acquire sufficient multi-angular observations. Existing algorithms for retrieving surface albedo from single-direction reflectance typically rely on land cover types and vegetation indices to extract the corresponding prior knowledge of surface anisotropic reflectance from coarse-resolution Bidirectional Reflectance Distribution Function (BRDF) products. This study introduces an algorithm for retrieving albedo from directional reflectance based on a 3 × 3 BRDF archetype database established using the 2015 global time-series Moderate Resolution Imaging Spectro-radiometer (MODIS) BRDF product. For different directions, BRDF archetypes are applied to the simulated MODIS directional reflectance to retrieve albedo. By comparing the retrieved albedos with the MODIS albedo, the BRDF archetype that yields the smallest Root Mean Squared Error (RMSE) is selected as the prior BRDF for the direction. A lookup table (LUT) that contains the optimal BRDF archetypes for albedo retrieval under various observational geometries is established. The impact of the number of BRDF archetypes on the accuracy of albedo is analyzed according to the 2020 MODIS BRDF. The LUT is applied to the MODIS BRDF within specific BRDF archetype classes to validate its applicability under different anisotropic reflectance characteristics. The applicability of the LUT across different data types is further evaluated using simulated reflectance or real multi-angular measurements. The results indicate that (1) for any direction, a specific BRDF archetype can retrieve a high-accuracy albedo from directional reflectance. The optimal BRDF archetype varies with the observation direction. (2) Compared to the prior BRDF knowledge obtained through averaging method, the BRDF archetype LUT based on the 3 × 3 BRDF archetype database can more accurately retrieve the surface albedo. (3) The BRDF archetype LUT effectively eliminates the influence of surface anisotropic reflectance characteristics in albedo retrieval across different scales and types of data.

Funder

Open Fund of State Key Laboratory of Remote Sensing Science

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3