Reflectance Anisotropy from MODIS for Albedo Retrieval from a Single Directional Reflectance

Author:

Zhang HuORCID,Zhao Mengzhuo,Jiao ZitiORCID,Lian Yi,Chen Lei,Cui LeiORCID,Zhang XiaoningORCID,Liu Yan,Dong Yadong,Qian Da,Wang YitingORCID,Li Juan,Cui Tiejun

Abstract

Surface reflectance anisotropy and insufficient multi-angular observations are the main challenges in albedo estimation from satellite observations. Numerous studies have been developed for albedo retrieval from a single directional reflectance by associating the anisotropy information extracted from coarse-resolution bidirectional-reflectance distribution function (BRDF) data. The contribution of land-cover type (LCT) and the Normalized Difference Vegetation Index (NDVI) in distinguishing reflectance anisotropy in these methods remains controversial. This study first proposed an approach to extracting a priori BRDF (F) from the MODIS BRDF/albedo product by considering the distribution characteristics of the model parameters. LCT- and NDVI-based F were also extracted from the corresponding subset. Then, the F-based albedo was derived from simulated or satellite directional reflectance and the anisotropic information of F. Finally, the directional reflectance and F-based albedo were compared with the MODIS albedo or ground measurement, in order to show the ability of F to compensate for the effect of reflectance anisotropy in the albedo retrieval process. The method was fully validated by the global and time-series MODIS BRDF data. The results showed that reflectance anisotropy has an aggregated distribution pattern, and F can represent the reflectance anisotropy of most pixels within a tile. The improvement of LCT and NDVI only occurs when the tile contains a large area of vegetated and barren ground. With the exception of the hotspot and large viewing-zenith-angle area in the forward hemisphere, the F-based shortwave albedo has high consistency with the MODIS albedo product. A comparison with the ground measurements and MODIS albedo showed that the F-based albedo from a single directional reflectance generally achieves an absolute accuracy requirement, with a root-mean-square error (RMSE) of 0.027 and 0.036.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3