Semantic Segmentation and Analysis on Sensitive Parameters of Forest Fire Smoke Using Smoke-Unet and Landsat-8 Imagery

Author:

Wang Zewei,Yang Pengfei,Liang Haotian,Zheng ChangeORCID,Yin JiyanORCID,Tian Ye,Cui Wenbin

Abstract

Forest fire is a ubiquitous disaster which has a long-term impact on the local climate as well as the ecological balance and fire products based on remote sensing satellite data have developed rapidly. However, the early forest fire smoke in remote sensing images is small in area and easily confused by clouds and fog, which makes it difficult to be identified. Too many redundant frequency bands and remote sensing index for remote sensing satellite data will have an interference on wildfire smoke detection, resulting in a decline in detection accuracy and detection efficiency for wildfire smoke. To solve these problems, this study analyzed the sensitivity of remote sensing satellite data and remote sensing index used for wildfire detection. First, a high-resolution remote sensing multispectral image dataset of forest fire smoke, containing different years, seasons, regions and land cover, was established. Then Smoke-Unet, a smoke segmentation network model based on an improved Unet combined with the attention mechanism and residual block, was proposed. Furthermore, in order to reduce data redundancy and improve the recognition accuracy of the algorithm, the conclusion was made by experiments that the RGB, SWIR2 and AOD bands are sensitive to smoke recognition in Landsat-8 images. The experimental results show that the smoke pixel accuracy rate using the proposed Smoke-Unet is 3.1% higher than that of Unet, which could effectively segment the smoke pixels in remote sensing images. This proposed method under the RGB, SWIR2 and AOD bands can help to segment smoke by using high-sensitivity band and remote sensing index and makes an early alarm of forest fire smoke.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3