A Systematic Literature Review and Bibliometric Analysis of Semantic Segmentation Models in Land Cover Mapping

Author:

Ajibola Segun12ORCID,Cabral Pedro23ORCID

Affiliation:

1. Afridat UG (haftungsbeschränkt), Sebastianstrasse 38, 53115 Bonn, Germany

2. NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312 Lisbon, Portugal

3. School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China

Abstract

Recent advancements in deep learning have spurred the development of numerous novel semantic segmentation models for land cover mapping, showcasing exceptional performance in delineating precise boundaries and producing highly accurate land cover maps. However, to date, no systematic literature review has comprehensively examined semantic segmentation models in the context of land cover mapping. This paper addresses this gap by synthesizing recent advancements in semantic segmentation models for land cover mapping from 2017 to 2023, drawing insights on trends, data sources, model structures, and performance metrics based on a review of 106 articles. Our analysis identifies top journals in the field, including MDPI Remote Sensing, IEEE Journal of Selected Topics in Earth Science, and IEEE Transactions on Geoscience and Remote Sensing, IEEE Geoscience and Remote Sensing Letters, and ISPRS Journal Of Photogrammetry And Remote Sensing. We find that research predominantly focuses on land cover, urban areas, precision agriculture, environment, coastal areas, and forests. Geographically, 35.29% of the study areas are located in China, followed by the USA (11.76%), France (5.88%), Spain (4%), and others. Sentinel-2, Sentinel-1, and Landsat satellites emerge as the most used data sources. Benchmark datasets such as ISPRS Vaihingen and Potsdam, LandCover.ai, DeepGlobe, and GID datasets are frequently employed. Model architectures predominantly utilize encoder–decoder and hybrid convolutional neural network-based structures because of their impressive performances, with limited adoption of transformer-based architectures due to its computational complexity issue and slow convergence speed. Lastly, this paper highlights existing key research gaps in the field to guide future research directions.

Funder

European Union

FCT

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3