Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review

Author:

Vali AvaORCID,Comai Sara,Matteucci MatteoORCID

Abstract

Lately, with deep learning outpacing the other machine learning techniques in classifying images, we have witnessed a growing interest of the remote sensing community in employing these techniques for the land use and land cover classification based on multispectral and hyperspectral images; the number of related publications almost doubling each year since 2015 is an attest to that. The advances in remote sensing technologies, hence the fast-growing volume of timely data available at the global scale, offer new opportunities for a variety of applications. Deep learning being significantly successful in dealing with Big Data, seems to be a great candidate for exploiting the potentials of such complex massive data. However, there are some challenges related to the ground-truth, resolution, and the nature of data that strongly impact the performance of classification. In this paper, we review the use of deep learning in land use and land cover classification based on multispectral and hyperspectral images and we introduce the available data sources and datasets used by literature studies; we provide the readers with a framework to interpret the-state-of-the-art of deep learning in this context and offer a platform to approach methodologies, data, and challenges of the field.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference181 articles.

1. Towards a European AI4EO R&I Agendahttps://eo4society.esa.int/wp-content/uploads/2018/09/ai4eo_v1.0.pdf

2. Global effects of land use on local terrestrial biodiversity

3. Human Domination of Earth's Ecosystems

4. The Importance of Land-Cover Change in Simulating Future Climates

5. Relating Land Use and Global Land-Cover Change;Turner,1993

Cited by 242 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3