Abstract
Semantic segmentation is an important and challenging task in the aerial image community since it can extract the target level information for understanding the aerial image. As a practical application of aerial image semantic segmentation, building extraction always attracts researchers’ attention as the building is the specific land cover in the aerial images. There are two key points for building extraction from aerial images. One is learning the global and local features to fully describe the buildings with diverse shapes. The other one is mining the multi-scale information to discover the buildings with different resolutions. Taking these two key points into account, we propose a new method named global multi-scale encoder-decoder network (GMEDN) in this paper. Based on the encoder-decoder framework, GMEDN is developed with a local and global encoder and a distilling decoder. The local and global encoder aims at learning the representative features from the aerial images for describing the buildings, while the distilling decoder focuses on exploring the multi-scale information for the final segmentation masks. Combining them together, the building extraction is accomplished in an end-to-end manner. The effectiveness of our method is validated by the experiments counted on two public aerial image datasets. Compared with some existing methods, our model can achieve better performance.
Subject
General Earth and Planetary Sciences
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献