Author:
Lei Tsu Chiang,Wan Shiuan,Wu Shih-Chieh,Wang Hsin-Ping
Abstract
Remote sensing technology has rendered lots of information in agriculture. It has usually been used to monitor paddy growing ecosystems in the past few decades. However, there are uncertainties in data fusion techniques which can be resolved in image classification on paddy rice. In this study, a series of learning concepts integrated by a probability progress Fuzzy Dempster-Shafer (FDS) analysis is presented to upgrade various models and different types of image data which is the goal of this study. More specifically, the study utilized the FDS to generate a series of probability models in the classification of the system. In addition, Logistic Regression (LR), Support Vector Machine (SVM), and Neural Network (NN) approaches are employed into the developed FDS system. Furthermore, two different image types are Satellite Image and Aerial Photo used as the analysis material. The overall classification accuracy has been improved to 97.27%, and the kappa value is 0.93. The overall accuracy of the paddy field image classification for a multi-period of mid-scale satellite images is between 85% and 90%. The overall accuracy of the classification using multi-spectral numerical aerial photos can be between 91% and 95%. The FDS improves the accuracy of the above image classification results.
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献