A New Approach of Ensemble Learning Technique to Resolve the Uncertainties of Paddy Area through Image Classification

Author:

Lei Tsu Chiang,Wan Shiuan,Wu Shih-Chieh,Wang Hsin-Ping

Abstract

Remote sensing technology has rendered lots of information in agriculture. It has usually been used to monitor paddy growing ecosystems in the past few decades. However, there are uncertainties in data fusion techniques which can be resolved in image classification on paddy rice. In this study, a series of learning concepts integrated by a probability progress Fuzzy Dempster-Shafer (FDS) analysis is presented to upgrade various models and different types of image data which is the goal of this study. More specifically, the study utilized the FDS to generate a series of probability models in the classification of the system. In addition, Logistic Regression (LR), Support Vector Machine (SVM), and Neural Network (NN) approaches are employed into the developed FDS system. Furthermore, two different image types are Satellite Image and Aerial Photo used as the analysis material. The overall classification accuracy has been improved to 97.27%, and the kappa value is 0.93. The overall accuracy of the paddy field image classification for a multi-period of mid-scale satellite images is between 85% and 90%. The overall accuracy of the classification using multi-spectral numerical aerial photos can be between 91% and 95%. The FDS improves the accuracy of the above image classification results.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3