Rapid Detection of Hybrid Maize Parental Lines Using Stacking Ensemble Machine Learning

Author:

Aqil M.1ORCID,Azrai M.1ORCID,Mejaya M. J.2ORCID,Subekti N. A.3,Tabri F.1,Andayani N. N.1,Wati Rahma1,Panikkai S.1,Suwardi S.1ORCID,Bunyamin Z.1,Roy E.1,Muslimin M.1,Yasin M.1,Prakasa E.4ORCID

Affiliation:

1. Indonesian Cereals Research Institute, Maros, Indonesia

2. Indonesian Legumes and Tuber Crops Research Institute, Malang, Indonesia

3. Indonesian Center for Food Crops Research and Development, Bogor, Indonesia

4. National Research and Innovation Agency, Bandung, Indonesia

Abstract

Hybrid maize seed production is a relatively complex task due to the coexistence of three distinct types of maize plants in the field: female, male, and contaminant/off-type plants. Female and contaminant/off-type plants’ tassels should be removed immediately following flowering initiation, while male tassels should be retained to allow cross-pollination between male and female plants. Therefore, development of an intelligent tassel classification system is deemed critical for hybrid purity decision-making. The research’s primary contribution is the integration of two widely used transfer learning architectures, Inception V3 and SqueezeNet, with stacking ensemble machine learning using four algorithms (logistic regression, support vector machine, random forest, and k-nearest neighbors) for rapid classification of tassel images. Tenfold cross-validation was used to evaluate the model performance. Cloud computing was also investigated using EfficientNet to compare the predictive performance of the models. The models’ performance was assessed using four metrics: accuracy, AUC, precision, and recall. The results depicted an appropriate developed model that properly distinguished male, female, and contaminant plants. The integration of the model with machine learnings (logistic regression, SVM, random forest, and KNNs) enables rapid recognition of off-type plants even though it is operated by personnel with limited skills of seed technology on ideotype recognition. Among all the evaluated CNN architecture and stacking models, Inception V3-embedded images with logistic regression metaclassifier outperformed other models with accuracy of about 98%. SqueezeNet and EfficientNet provided comparable results for consistent tassel classification with slightly lower performance measures. The model was also subjected to a multidimensional scaling (MDS) analysis to investigate and comprehend misclassification. Male and female plants are clearly distinguished by MDS, but female and off-type/contamination plants are ambiguous. This indicates that the prediction errors were caused by highly similar data features among female and off-type images. The developed modern plant phenotyping model can be used to assist breeders/technicians in maintaining the quality of large-scale hybrid maize seed production activities in Indonesia.

Funder

Ministry of Agriculture, Republic of Indonesia

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Civil and Structural Engineering,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3