Comparative Analysis of Machine Learning Models for Predicting Crack Propagation under Coupled Load and Temperature

Author:

Omar Intisar1ORCID,Khan Muhammad1ORCID,Starr Andrew1ORCID

Affiliation:

1. School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK

Abstract

Crack propagation in materials is a complex phenomenon that is influenced by various factors, including dynamic load and temperature. In this study, we investigated the performance of different machine learning models for predicting crack propagation in three types of materials: composite, metal, and polymer. For composite materials, we used Random Forest Regressor, Support Vector Regression, and Gradient Boosting Regressor models, while for polymer and metal materials, we used Ridge, Lasso, and K-Nearest Neighbors models. We trained and tested these models using experimental data obtained from crack propagation tests performed under varying load and temperature conditions. We evaluated the performance of each model using the mean squared error (MSE) metric. Our results showed that the best-performing model for composite materials was Gradient Boosting Regressor, while for polymer and metal materials, Ridge and K-Nearest Neighbors models outperformed the other models. We also validated the models using additional experimental data and found that they could accurately predict crack propagation in all three materials with high accuracy. The study’s findings provide valuable insights into crack propagation behavior in different materials and offer practical applications in the design, construction, maintenance, and inspection of structures. By leveraging this knowledge, engineers and designers can make informed decisions to enhance the strength, reliability, and durability of structures, ensuring their long-term performance and safety.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3