Compatibility and challenges in machine learning approach for structural crack assessment

Author:

Omar Intisar1ORCID,Khan Muhammad2ORCID,Starr Andrew2

Affiliation:

1. School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, UK

2. Cranfield University, Cranfield, UK

Abstract

Structural health monitoring and assessment (SHMA) is exceptionally essential for preserving and sustaining any mechanical structure’s service life. A successful assessment should provide reliable and resolute information to maintain the continuous performance of the structure. This information can effectively determine crack progression and its overall impact on the structural operation. However, the available sensing techniques and methods for performing SHMA generate raw measurements that require significant data processing before making any valuable predictions. Machine learning (ML) algorithms (supervised and unsupervised learning) have been extensively used for such data processing. These algorithms extract damage-sensitive features from the raw data to identify structural conditions and performance. As per the available published literature, the extraction of these features has been quite random and used by academic researchers without a suitability justification. In this paper, a comprehensive literature review is performed to emphasise the influence of damage-sensitive features on ML algorithms. The selection and suitability of these features are critically reviewed while processing raw data obtained from different materials (metals, composites and polymers). It has been found that an accurate crack prediction is only possible if the selection of damage-sensitive features and ML algorithms is performed based on available raw data and structure material type. This paper also highlights the current challenges and limitations during the mentioned sections.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3