Investigation of the Combined Influence of Temperature and Humidity on Fatigue Crack Growth Rate in Al6082 Alloy in a Coastal Environment

Author:

Alqahtani Ibrahim1ORCID,Starr Andrew1ORCID,Khan Muhammad1ORCID

Affiliation:

1. Centre for Life-Cycle Engineering and Management, School of Aerospace, Transport and Manufacturing, Cranfield University, College Road, Cranfield MK43 0AL, UK

Abstract

The fatigue crack growth rate (FCGR) of aluminium alloys under the combined influence of temperature and humidity remains a relatively unexplored area, receiving limited attention due to its intricate nature and challenges in predicting the combined impact of these factors. The challenge was to investigate and address the specific mechanisms and interactions between temperature and humidity, as in coastal environment conditions, on the FCGR of aluminium alloy. The present study conducts a comprehensive investigation into the combined influence of temperature and humidity on the FCGR of the Al6082 alloy. The fatigue pre-cracked compact tension specimens were corroded for 7 days and then subjected to various temperature and humidity conditions in a thermal chamber for 3 days to simulate coastal environments. The obtained data were analysed to determine the influence of temperature and humidity on the FCGR of the Al6082 alloy. An empirical model was also established to precisely predict fatigue life cycle values under these environmental conditions. The correlation between FCGR and fracture toughness models was also examined. The Al6082 alloy exhibits a 34% increase in the Paris constant C, indicating reduced FCGR resistance due to elevated temperature and humidity levels. At the same time, fatigue, corrosion, moisture-assisted crack propagation, and hydrogen embrittlement lead to a 27% decrease in threshold fracture toughness. The developed model exhibited accurate predictions for fatigue life cycles, and the correlation between fracture toughness and FCGR showed an error of less than 10%, indicating a strong relationship between these parameters.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3