Iterative Dynamic Critical Path Scheduling: An Efficient Technique for Offloading Task Graphs in Mobile Edge Computing

Author:

Xu Bo,Hu Yi,Hu Menglan,Liu Feng,Peng Kai,Liu Lan

Abstract

Recent years have witnessed a paradigm shift from centralized cloud computing to decentralized edge computing. As a key enabler technique in edge computing, computation offloading migrates computation-intensive tasks from resource-limited devices to nearby devices, optimizing service latency and energy consumption. In this paper, we investigate the problem of offloading task graphs in edge computing scenarios. Previous work based on list-scheduling heuristics is likely to suffer from severe processor time wastage due to intricate task dependencies and data transfer requirements. To this end, we propose a novel offloading algorithm, referred to as Iterative Dynamic Critical Path Scheduling (IDCP). IDCP minimizes the makespan by iteratively migrating tasks to keep shortening the dynamic critical path. Through IDCP, what is managed are essentially the sequences among tasks, including task dependencies and scheduled sequences on processors. Since we only schedule sequences here, the actual start time of each task is not fixed during the scheduling process, which effectively helps to avoid unfavorable schedules. Such flexibilities also offer us much space for continuous scheduling optimizations. Our experimental results show that our algorithm significantly outperforms existing list-scheduling heuristics in various scenarios, which demonstrates the effectiveness and competitiveness of our algorithm.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3