Efficient Multi-Player Computation Offloading for VR Edge-Cloud Computing Systems

Author:

Alshahrani Abdullah,Elgendy Ibrahim A.ORCID,Muthanna AmmarORCID,Alghamdi Ahmed MohammedORCID,Alshamrani Adel

Abstract

Virtual reality (VR) is considered to be one of the main use cases of the fifth-generation cellular system (5G). In addition, it has been categorized as one of the ultra-low latency applications in which VR applications require an end-to-end latency of 5 ms. However, the limited battery capacity and computing resources of mobile devices restrict the execution of VR applications on these devices. As a result, mobile edge-cloud computing is considered as a new paradigm to mitigate resource limitations of these devices through computation offloading process with low latency. To this end, this paper introduces an efficient multi-player with multi-task computation offloading model with guaranteed performance in network latency and energy consumption for VR applications based on mobile edge-cloud computing. In addition, this model has been formulated as an integer optimization problem whose objective is to minimize the sum cost of the entire system in terms of network latency and energy consumption. Afterwards, a low-complexity algorithm has been designed which provides comprehensive processes for deriving the optimal computation offloading decision in an efficient manner. Furthermore, we provide a prototype and real implementation for the proposed system using OpenAirInterface software. Finally, simulations have been conducted to validate our proposed model and prove that the network latency and energy consumption can be reduced by up to 26.2%, 27.2% and 10.9%, 12.2% in comparison with edge and cloud execution, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic resource allocation and computational offload optimization method for 5G network slicing in MEC environment;Physical Communication;2024-10

2. QoS‐enhanced load balancing strategies for metaverse‐infused VR/AR in engineering education 5.0;Computer Applications in Engineering Education;2024-02-07

3. A Systematic Mapping Study of UAV-Enabled Mobile Edge Computing for Task Offloading;IEEE Access;2024

4. Cloud VR Video Streaming Processing Algorithm Based on Edge Cloud Collaboration;2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC);2023-09-05

5. Can My WiFi Handle the Metaverse? A Performance Evaluation Of Meta's Flagship Virtual Reality Hardware;Companion of the 2023 ACM/SPEC International Conference on Performance Engineering;2023-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3