Flexible Offloading and Task Scheduling for IoT Applications in Dynamic Multi-Access Edge Computing Environments

Author:

Sun Yang1ORCID,Bian Yuwei1,Li Huixin2,Tan Fangqing3,Liu Lihan4

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

2. CICT Mobile Communication Technology Co., Ltd., Beijing 100083, China

3. Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education, Guilin University of Electronic Technology, Guilin 541004, China

4. School of Statistics and Data Science, Beijing Wuzi University, Beijing 101149, China

Abstract

Nowadays, multi-access edge computing (MEC) has been widely recognized as a promising technology that can support a wide range of new applications for the Internet of Things (IoT). In dynamic MEC networks, the heterogeneous computation capacities of the edge servers and the diversified requirements of the IoT applications are both asymmetric, where and when to offload and schedule the time-dependent tasks of IoT applications remains a challenge. In this paper, we propose a flexible offloading and task scheduling scheme (FLOATS) to adaptively optimize the computation of offloading decisions and scheduling priority sequences for time-dependent tasks in dynamic networks. We model the dynamic optimization problem as a multi-objective combinatorial optimization problem in an infinite time horizon, which is intractable to solve. To address this, a rolling-horizon-based optimization mechanism is designed to decompose the dynamic optimization problem into a series of static sub-problems. A genetic algorithm (GA)-based computation offloading and task scheduling algorithm is proposed for each static sub-problem. This algorithm encodes feasible solutions into two-layer chromosomes, and the optimal solution can be obtained through chromosome selection, crossover and mutation operations. The simulation results demonstrate that the proposed scheme can effectively reduce network costs in comparison to other reference schemes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Open Fund Project of Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3