Analytical Solution and Shaking Table Test on Tunnels through Soft-Hard Stratum with a Transition Tunnel and Flexible Joints

Author:

Yan Gaoming,Zhao BomingORCID

Abstract

Tunnels, where they pass through soft-hard strata, are severely damaged during earthquakes. These issues have not yet been well understood. In this study, the seismic performances of a tunnel passing through soft-hard stratum with a transition tunnel and flexible joints under earthquake motion were investigated by proposed analytical solutions and scaled shaking table tests. First, a mechanical model of a tunnel passing through soft-hard stratum with flexible joints is proposed, and it is derived by the Green’s function method. Then, a parametric analysis is conducted to investigate the effects of important variables on tunnels through soft-hard stratum. Finally, shaking table tests are conducted to verify the proposed solution and further investigate the seismic behaviors of the tunnel. The results show that: (1) the analytical solutions are workable and effective; (2) the influence of the soft-hard stratum junction on the tunnel responses is remarkable—the largest bending moment is located at the side of soft rock near the sharp contact area and the maximum shear force appears at the contact; (3) the joints and the transition tunnel could mitigate the potential adverse effects of the sharp contact area—the region affected by the joint is approximately 4.5 times the tunnel diameter on both sides of the stratum interface; and (4) the influence of sharp change of ground layers is more remarkable with a larger excitation amplitude.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3