Seismic Isolation Materials for Bored Rock Tunnels: A Parametric Analysis

Author:

Elgamal Ahmed1ORCID,Elfaris Nissreen2ORCID

Affiliation:

1. Faculty of Engineering, Damietta University, Damietta 34517, Egypt

2. National Authority for Tunnels, Cairo 11511, Egypt

Abstract

Most recent tunnel designs rely on more thorough analyses of the intricate rock interactions. The three principal techniques for excavating rock tunneling are drill-and-blast for complete or partial cross-sections, TBM only for circular cross-sections with full faces, and road header for small portions. Tunnel-boring machines (TBM) are being utilized to excavate an increasing number of tunnels. Newer studies have demonstrated that subterranean structures such as tunnels produce a variety of consequences during and after ground shaking, challenging the long-held belief that they are among the most earthquake-resistant structures. Consequently, engineering assessment has become crucial for these unique structures from both the geotechnical and structural engineering standpoints. The designer should evaluate the underground structure’s safety to ensure it can sustain various applied loads, considering both seismic loads and temporary and permanent static loads. This paper investigates how adding elastic, soft material between a circular tunnel and the surrounding rock affects seismic response. To conduct the study, Midas/GTS-NX was used to model the TBM tunnel and the nearby rock using the finite element (F.E.) method to simulate the soil–tunnel interactions. A time–history analysis of the El Centro (1940) earthquake was used to calculated the stresses accumulated in the tunnels during seismic episodes. Peak ground accelerations of 0.10–0.30 g, relative to the tunnel axis, were used for excitation. The analysis utilized a time step of 0.02 s, and the duration of the seismic event was set at 10 s. Numerical models were developed to represent tunnels passing through rock, with the traditional grout pea gravel vs. isolation layer. A parametric study determined how isolation material characteristics like shear modulus, Poisson’s ratio, and unit weight affect tunnel-induced stresses. In the meantime, this paper details the effects of various seismic isolation materials, such as geofoam, foam concrete, and silicon-based isolation material, to improve protection against seismic shaking. The analysis’s findings are discussed, and how seismic isolation affects these important structures’ performance and safety requirements is explained.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3