A Novel Constant Damping and High Stiffness Control Method for Flexible Space Manipulators Using Luenberger State Observer

Author:

Yang Tao12345,Xu Fang12,Zeng Si45,Zhao Shoujun45,Liu Yuwang12,Wang Yanbo45ORCID

Affiliation:

1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. Beijing Institute of Precision Mechatronics and Controls, Beijing 100076, China

5. Laboratory of Aerospace Servo Actuation and Transmission, Beijing 100076, China

Abstract

This paper presents a novel control strategy for transferring large inertia loads using flexible space manipulators in orbit. The proposed strategy employs a Luenberger state observer and damping-stiffness controller to address issues of large tracking error and vibration. A comprehensive joint dynamics model is developed to identify the main sources of disturbance, and a Luenberger state observer is designed to estimate unmeasurable transmission deformation. Transmission stiffness and load inertia perturbations are identified based on the estimated results. By adjusting velocity damping and the gain of the forward channel, perturbations are suppressed to maintain optimal system damping and stiffness. Simulation and physical experiments demonstrate the effectiveness of the algorithm, with simulation experiments showing smoother joint output characteristics and minimal vibration under large load inertia changes, and a 97% reduction in internal deformation. Physical experiments demonstrate improved joint dynamic command tracking performance, with an 88% reduction in position tracking error. The algorithm provides a practical and efficient approach for transferring large inertia scientific payloads in space.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3