Optimized Approach for Localization of Sensor Nodes in 2D Wireless Sensor Networks Using Modified Learning Enthusiasm-Based Teaching–Learning-Based Optimization Algorithm

Author:

Kaur Goldendeep,Jyoti Kiran,Mittal NitinORCID,Mittal VikasORCID,Salgotra Rohit

Abstract

Wireless Sensor Networks (WSNs) have a wonderful potential to interconnect with the physical world and collect data. Data estimation, long lifespan, deployment, routing, task scheduling, safety, and localization are the primary performance difficulties for WSNs. WSNs are made up of sensor nodes set up with minimal battery power to monitor and reveal the occurrences in the sensor field. Detecting the location is a difficult task, but it is a crucial characteristic in many WSN applications. Locating all of the sensor nodes efficiently to obtain the precise location of an occurrence is a critical challenge. Surveillance, animal monitoring, tracking of moving objects, and forest fire detection are just a few of the applications that demand precise location determination. To cope with localization challenges in WSNs, there is a variety of localization algorithms accessible in the literature. The goal of this research is to use various optimization strategies to solve the localization problem. In this work, a modified learning enthusiasm-based teaching–learning-based optimization (mLebTLBO) algorithm is used to cope with a 2D localization problem applying the notion of an exclusive anchor node and movable target nodes. A modified LebTLBO algorithm seeks to increase overall efficiency by assessing the exploration and exploitation abilities. The computational results reveal that this technique outperforms others with respect to localization errors in a 2D environment of WSN.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3