Exploring the potential of 5G uplink communication: Synergistic integration of joint power control, user grouping, and multi-learning Grey Wolf Optimizer

Author:

Sikkanan Sobana,Kumar Chandrasekaran,Manoharan Premkumar,Ravichandran Sowmya

Abstract

AbstractNon-orthogonal Multiple Access (NOMA) techniques offer potential enhancements in spectral efficiency for 5G and 6G wireless networks, facilitating broader network access. Central to realizing optimal system performance are factors like joint power control, user grouping, and decoding order. This study investigates power control and user grouping to optimize spectral efficiency in NOMA uplink systems, aiming to reduce computational difficulty. While previous research on this integrated optimization has identified several near-optimal solutions, they often come with considerable system and computational overheads. To address this, this study employed an improved Grey Wolf Optimizer (GWO), a nature-inspired metaheuristic optimization method. Although GWO is effective, it can sometimes converge prematurely and might lack diversity. To enhance its performance, this study introduces a new version of GWO, integrating Competitive Learning, Q-learning, and Greedy Selection. Competitive learning adopts agent competition, balancing exploration and exploitation and preserving diversity. Q-learning guides the search based on past experiences, enhancing adaptability and preventing redundant exploration of sub-optimal regions. Greedy selection ensures the retention of the best solutions after each iteration. The synergistic integration of these three components substantially enhances the performance of the standard GWO. This algorithm was used to manage power and user-grouping in NOMA systems, aiming to strengthen system performance while restricting computational demands. The effectiveness of the proposed algorithm was validated through numerical evaluations. Simulated outcomes revealed that when applied to the joint challenge in NOMA uplink systems, it surpasses the spectral efficiency of conventional orthogonal multiple access. Moreover, the proposed approach demonstrated superior performance compared to the standard GWO and other state-of-the-art algorithms, achieving reduced system complexity under identical constraints.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3