Toward Integrated Large-Scale Environmental Monitoring Using WSN/UAV/Crowdsensing: A Review of Applications, Signal Processing, and Future Perspectives

Author:

Fascista AlessioORCID

Abstract

Fighting Earth’s degradation and safeguarding the environment are subjects of topical interest and sources of hot debate in today’s society. According to the United Nations, there is a compelling need to take immediate actions worldwide and to implement large-scale monitoring policies aimed at counteracting the unprecedented levels of air, land, and water pollution. This requires going beyond the legacy technologies currently employed by government authorities and adopting more advanced systems that guarantee a continuous and pervasive monitoring of the environment in all its different aspects. In this paper, we take the research on integrated and large-scale environmental monitoring a step further by providing a comprehensive review that covers transversally all the main applications of wireless sensor networks (WSNs), unmanned aerial vehicles (UAVs), and crowdsensing monitoring technologies. By outlining the available solutions and current limitations, we identify in the cooperation among terrestrial (WSN/crowdsensing) and aerial (UAVs) sensing, coupled with the adoption of advanced signal processing techniques, the major pillars at the basis of future integrated (air, land, and water) and large-scale environmental monitoring systems. This review not only consolidates the progresses achieved in the field of environmental monitoring, but also sheds new lights on potential future research directions and synergies among different research areas.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference462 articles.

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3