Textile-Based Flexible Capacitive Pressure Sensors: A Review

Author:

Su Min,Li Pei,Liu Xueqin,Wei DapengORCID,Yang JunORCID

Abstract

Flexible capacitive pressure sensors have been widely used in electronic skin, human movement and health monitoring, and human–machine interactions. Recently, electronic textiles afford a valuable alternative to traditional capacitive pressure sensors due to their merits of flexibility, light weight, air permeability, low cost, and feasibility to fit various surfaces. The textile-based functional layers can serve as electrodes, dielectrics, and substrates, and various devices with semi-textile or all-textile structures have been well developed. This paper provides a comprehensive review of recent developments in textile-based flexible capacitive pressure sensors. The latest research progresses on textile devices with sandwich structures, yarn structures, and in-plane structures are introduced, and the influences of different device structures on performance are discussed. The applications of textile-based sensors in human wearable devices, robotic sensing, and human–machine interaction are then summarized. Finally, evolutionary trends, future directions, and challenges are highlighted.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of CAS

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of flexible strain sensors for walking gait monitoring;Sensors and Actuators A: Physical;2024-10

2. Flexible capacitive pressure sensor based on warp knitted spacer fabric;Sensors and Actuators A: Physical;2024-10

3. A large-area less-wires stretchable robot electronic skin;Sensors and Actuators A: Physical;2024-10

4. Flexible conformal force-sensitive electrode based on the micro-pyramid structure;Journal of Physics: Conference Series;2024-06-01

5. Research and design of terminal block cover abnormal position detection device;Eighth International Conference on Energy System, Electricity, and Power (ESEP 2023);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3