Accurate Atomic-Scale Imaging of Two-Dimensional Lattices Using Atomic Force Microscopy in Ambient Conditions

Author:

Kim Sunghyun,Moon Donghyeon,Jeon Bo Ram,Yeon Jegyeong,Li Xiaoqin,Kim Suenne

Abstract

To facilitate the rapid development of van der Waals materials and heterostructures, scanning probe methods capable of nondestructively visualizing atomic lattices and moiré superlattices are highly desirable. Lateral force microscopy (LFM), which measures nanoscale friction based on the commonly available atomic force microscopy (AFM), can be used for imaging a wide range of two-dimensional (2D) materials, but imaging atomic lattices using this technique is difficult. Here, we examined a number of the common challenges encountered in LFM experiments and presented a universal protocol for obtaining reliable atomic-scale images of 2D materials under ambient environment. By studying a series of LFM images of graphene and transition metal dichalcogenides (TMDs), we have found that the accuracy and the contrast of atomic-scale images critically depended on several scanning parameters including the scan size and the scan rate. We applied this protocol to investigate the atomic structure of the ripped and self-folded edges of graphene and have found that these edges were mostly in the armchair direction. This finding is consistent with the results of several simulations results. Our study will guide the extensive effort on assembly and characterization of new 2D materials and heterostructures.

Funder

National Research Foundation of Korea

Welch Foundation

The University of Texas at Austin

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3